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ANALYTICAL SUMMARY -PART I
The Physical Properties of STS Under

Triaxial Stress.

1. For some years the Naval Proving Ground has been assiduously
engaged in the study of the penetration of armor by projectiles. Pursuance
of this work to conclusive results must be predicated upon well subetae-
tiated theories defining the performances of the materials involved under
the various possible condi-,ions.

2. Particularly necessary in the more immediately practical field
of armor study' and evaluation is the need for dependable plate penetration
charts or tables. In 11943 Lieut. Comdr. A. V. Hershey, USNR was assigned
the task of preparing such charts. In prosecution of the assigned task
he conducted an exhaustive study, employed for the first time new methods
of attack and developed new theories concerning the phenomena incident to
tLe penetratoron of plates by projectiles.

3. During the latter years of WorlI War II, Lieut. Comdr. Hershey
prepared a sories of nine reports which are being published by the Naval
2rovirng rround under titles as follows:

(1) ANALYTICAL SUMMARY. PART I. THE PITPSICAL PROPERTIES OF STS
UNDER TRIAXIAL STRESS.

Object: To summarize the available dat& on the physical proper-
ties of Class B Armor and STS under triaxial stress.

(2) ANALYTICAL SUMMARY. PART II. ELASTIC AND PLASTIC UNDOLATION3
IN ARMOR PLATE.

QO•_et: To analyse the propagation of undulations in armor plate;
to summarize previous analytical work and to add new
analytical work where required in order to complete the
theory :or ballistic applications.

i Page ii
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(3) ANALYTICAL SUmmARY. PART III. PLASTIC FLOW IN ARMOR PLATE.

Object: To analyse the plastic flow in armor plate adjacent to
the point of impact by a projectile.

(4) ANALYTICAL SUMMARY. PART IV. THE THEORY OF ARMOR PENETRATION.

Object: To sunmmrize the theory of armor penetration in its
present state of development, and to develop theoretical
functions which can be used as a guide in the interpreta-
tion of ballistic data.

(5) BALLISTIC SUMMARY. PART I. THE DEPENDENCE OF LIMIT VELOCITY ON
PLATE THICKNESS AND OBLIQUITY AT LOW OBLIQUITY.

SObject: To compare the results of ballistic test with the
prediction of existing formulae, and with the results
of theoretical analysis; to find the mathematical func-
tions which bpst represent the fundamental relationship
between limit velocity, plate thickness, and obliquity
at low obliquity.

(6) BALLISTIC SUMMARY. PART II. THE SCALE EFFECT AND THE OGIVE
EFFECT.

ObJect: To determine the effect of scale on ballistic perfor-
mance, and to corr'elate the projectile nose shape with
the results of ballistic test.

"(7) BALLISTIC SUMMARY. PART III. THE WINDSHIELD EFFECT, AND THE
OBLIQUITY EFFECT FOR COMMON PROJEuLTILES.

Object: To analyse the action of a windshield during impact, and
to develop mathematical functions which best represent
the ballistic performance of common projectiles.

(b) BALLISTIC SUMMARY. PART IV. THE CAP EFFECT, AND THE OBLIQUITY

EFFECT FOR AP PROJECTILES.

Object: To determine the action of a cap during impact, and to
develop mathematical functions which best represent
the ballistic performance of AP projectiles.

SPagl iii
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(9) BALLISTIC SUMMARY PART V. THE CONSTRUCTION OF PLATE PENETRA-
TION CTARTS OR TABLES.

Object: To suwaa-ize the results of analysis in the form of
standard charts or tables.

4. The opinions and statements contained in these reports are the
expressions of the author, and do not necessarily represent the official
views of the Naval Proving G.round.

C. T. JOY

"Rear Admiral,USN
Commanding Officer

I
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PREFACE

AUT HORI ZAT ION

The material in this report is supplementary to the construc-
tion of plate penetration charts. It was authorized in BuOrd Letter
NP9/A9 (Re3) dated 9 January 1943.

OBJECT

STo summarize the available data on the physical propertie3 of

Class B Armor and STS under triaxial stress.

SUMMARY

The general analysis of stress and strain Is applied to the

data on STS and other steels to find mathematical functions which best

represent the isothermal stress-strain relationship for STS under tri-

axial stress. Functions are given to represent the variation of shear

stress with normal pressure, temperature, and strain rate. The adiabatic

stress-strain relati.onship for STS under shear stress is derived and is

applied to -the propagation of plane plastic waves in STS. An analysis

is made of the reflection of elastic waves from a free surface. Curves

are given to represent the relationships between stress moments and

curvatures in a bent plate.
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A knowledge of the physical properties of armor steel under
the conditions of impact is required in the analysis of the mechanics of
armor penetration. The deformation near the impact hole is triaxial and
varies from compression to shear.

There are available enough data to establish the stress-strain
relationship for armor steel in the three limiting cases of tension,
compression and shear. The stress-strain relationship for intermediate
oases is found by interpolation with the aid of general formulae which
have been established by tests on other metals.

The stress in armor steel which is subject to pure tension or
pure compression has been determined at small strains by standard engineer-
Ing tests, and has been investigated at large strains by Bridgman, 1 , 1 4 ,1e

The stress in armor steel which is subject to pure shear is
difficult to measure because it is not easy to obtain homogeneous shear
strains. in the conventional torsion test the shear strain varies from
zero on the axis of the test specimen to a maximum at the surface. The
strain would be more nearly uniform in a thin walled hollow cylinder,
which is stressed by internal pressure, but local imperfections in the
steel have been found to produce premature ruptures, 2 e of the cylinder
wall. Large shear strains in armor steel have been obtained -mith thick
walled cylinders by Bridgmanla.

Enough measurements have been made at various pressures,
temperatures, and strain rates to establish approximately the effects of
pressure, temperature, and strain rate on the stress-strain relationship.

The available lata for STS have been collected, and are summa-
rized in the present report by curves which best represent the stress-
strain-rate of1 strain relationship for ST'S of 115000 (lb)/(in)2 tensile
strength ct a temperature of 15•C. These strese-strain-rate of strain
relationships have been used in the analysis of a few simple examples of
plastic deformation, which are of importance in connection with terminal
ballistics.

The state of strain in the medium may b, described elther in
terms of the linear components of strain or in terms of the natural compo-
nents of strain. The linear strains are used in the present report, eince
they have a geometrical significance not possessed by the natural strains,
and the stress-strain relationships happen to be symsetric in form when
expressed in terms of linear strains. Since the analysis Involves the
general behavior of media under a polyaxial stress system, vector and
tensor notation have been used.
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II GENERAL ANALYSIS OF STRESS AND STRAIN

Elastic Media

Strain' in an elastic medium deforms a sphere into an ellipsoid,
and applies to the components of a line segmen: in the medium a linear
homogeneous transformation. Each particle of the medium experiences a
vector displacement Ar which varies from point to point in the medium.
The difference dAr, between the displacements Ar and Ar + dAr, of two
points which were initially Peparated by the line segment dr, is given
by the equation

dAr = drV6-r

The two points are separated after deformation by the line segment
dr + dAr. The tensor VAr is the aum of an antisymmetric tensor
k(VAr - V*Ar) and a symmetric tensor i(VAr + V*Ar). The antisymmetric

part is a rotation without strain if the displacements are small, and
the symmetric part is a strain without rotation. A strain tensor 0
exists which may be defined in terms of displacement by the equation

4> = j 4 V *ý%r)(i

The volume of a space initially enclosed by a surface s in the medium is

increased on deformation by an amount given by the equation

fAr'ds = fV'Ard; (2)

A surface element in a medium under stpess to acted upon by a
force in the direction of stress. The magnitude of the force is propor-
tional to the area of the projection of the surface element on a plal,e
perpendicular to the direction of stress, which is just the c3mponent in
the lirection of stress of the vector representing the surface element.
The scalar componente of a force on a surface element are therefore
obtained from the scalar components of the vector representing the sur-
face element by a liuear homogeneous transformation. A stress tensor
exists, such that the force f on a closed surface a in the medium is
given in terms of the stress tensor j by the equation

f 'Vde a f V- -r( 0)

The torque applied to a volume element in equal to the rate of increase
of angular momentum of the volume element. The torqu, applied by an
antieynmyetric stress tensor decreases with decrease in the size of the
element at a rate proportional to the cube of the linear dimensions of



the element, whereas the moment of inertia decreases at a rate propor-
tional tc the fifth pcwar of the linear dimensions. The torque for a
finite angular acceleration vanishes therefore in the limit as the size
of the element is decreased, and the stress tensor is symmetric.

The stress tensor may be expressed in terms of the three
principal stresses X1. X2, X8 and the orthogonal unitary vectors i,j,k,
which are collinear with the principal e-xes of stress, by the equation

S= X1 ii + X2jj + Xskk (4)

The stress exerts upon any surface element of unit area with the normal n
a force J'n which may be resolved into a normal component nn''rL in the
direction of n and a shear component T-n - nn-T-n along the surface ele-
ment. The normal component has a maximum or minimum value whenever n
coincides with one of the three principal axes i,j,k. The shear compo-
nent 4s zero whenever n coincides with the axes i,j,k end is a maximum

whenever n is equal to one of the three vectors L (i+j), (j

(k+i) which are midway between the principal axes. The stress exerts

upon an octahedral plane, whose normal n is the vector --(i +j +k), a

normal component '(XI + X2 + X,)n and a shear componc~nt

-(Xi + X2J + X1k) - - (XI + X2 + X3 )n. The stress therefore exerts upon

each face of an elementary octahedron, with axes parallel to the principal
axes of stress, a normal stress of magnitude -A(Xl + X2 + Xq) and a shear
stress of magnitude

_ -V X _ X ) + (X ( 9X ) T ( IS - • )•

In an isotropic elastic medium the principal axes of strain are
collinear with the principal axes of stress and the principal components
of strain el, e., e. are related to the principal components of stress X1,
12, X9 by the generalized Hooke's law

13. a 0

E E

I ,,,= +-11x - +~X - ,

e E X, - £ 9+X" o" 1

in which E' is Young's modulus and a is Poiason's ratio. These equations

MM'~ !aL



may be written in the alternrrtiv'e xorm
1-2a

21 4 e 2 + e3 = -"(XI + 2+,) (6)
E

e-d2 - (11-X2)

£-eL = -(XT.-.) ()

E

The dilation el + e 2 + eS is expressed in terms of the mmean hydrostatic
tension I(l + X2 + Xq) by the equation

3(1.-2a.) I_
C., + e2 + es X" (x 1 + X2 + XS) i)

and the octah"dral shear strain . (e.-e2 )
2 + (e2 -eg)' + (t9-e 1 )' i&

given in terms of the octahedral shear stress

1 (X1-X2)2 + (X2-Xs)2 + (XS-Xi)

L
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Ths ratn of strain Z, when referred to the axes i', j', k'1, has all of

the components in the matrix.

Il Z ~12 is

with principel components i. i2, is. A unit volume of .he medium

increases in volume at a rate V-v which is expressed in terms of e, •,

is by the equation

7 =i + i2 + is (22)

L- The components of rate of shear in the medium are the differences il-i2,

4•- 1.4 1- between the components of rate of strain.

In an isotropic plastic medium, the principal axes of stress are

colliear with the principal axes of rate of strain, but the components of

stress are functions of the components of rate of strain, the linear strain

and the previous history of the medium.

The state of stress2 in a polyaxial stress system may be repre-

sented graphically by a point in a three dimensional cartesian space, whose

coordinates are the principal components of stress. The state of strain

may similarly be represented graphically by a point in a three dimensional

cartesian space, whose coordinates are the principal components of strain.

For a particular element of the medium there is a line in each space

which traces out the stress or strain as a function of time, and corres-

ponds, in parametric form, to the stress-strain curve for a uniaxial stress

system.

The cartesian coordinates, X., X2 - X9 of a point in stress space

may be expressed in terms of a set of cylindrical polar coordinates, whose

polar axis makes equal angles with the three principal axes of stress.

The point in stress space lies on that octahedral plane which is situated

at a distance ( (i + 2 +Xs) from the origin as measured along the octa-

hedral axis. The distance from the point to the octehedral axis is

v'(X42)+ (,X.~+ X,-O ,'se5rd in the octahedral plane.

The crientatlon of t.e p int with respect to the octahedral axis may be

represented graphicaliy oy a projection of the point on the octahedral

plans, together with project!ons of the coordinate axes. Two stress-strain

curwes in stress space which differ only by the amount of hydrostatic

tension have almost identical projections on the octahedral plane.
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The actual medium obeys -the Bailey criterion in the neighbor-
hocd of the yield point but more complicated functions are required for
stresses far above the yield point. The loci of points in stress space
for unit octahedral shear strain are illustrated in Figure (2). The
points connected by Curve I represent the stress required to deform the
original material with the stress ratios held constant0  The points
labeled A represent the stress required to deform, by tension, compression,
or torsion, a medium which has been prestrained in tension. The octahedral
shear stress required for shear is much lees then the octahedral shear
stress required for tension or compression. The octahedral shear stress
required for torsion is nearly the same for a prestrain in tension as it
is for a prestrain in torsion. The conditions for plastic flow with the
stress ratios held constant are therefore nearly valid also for deforma-
tions in which the stress ratios vary, or in which the principal axes of
stress rotate. Curve I is symmetric about the octahedral axis, with three
axes of symnetry, and a function of the sixth degree is required to repre-
sent it, such as the function in the last line of Table IL

If the pressure, temperature, and strain rate modify the strees
by ratios which are independent of strain, then the parameters a€, 0, y in
Table I may be expressed as functions of the octahedral shear strain only,
for a static deformation at standard pressure and temperature, and the
parameter q, defined by the equation

q = (c((X 1-X 2 )2 + (x2-XS) 2 + (IS-x 1 )9)8 + O(x1 -xV) 2 (X2 -,XS) (XS-X,) 2 )5 (25)

is then proportional to the ratio between the stress in an actual deforma-
tion and the stress in the static deformation. The parameters o, 5 may be
so adjusted that q is equal to unity in a static deformation. It is also
convenient to so define y that the function f2 (XI-X2 ) is equal to unity
In a static deformation under pure tension. The parameter q may be repre-
sented as the product of three parameters, q1, q2 , q9 which are functions
respectively of pressure, temperature, and strain rate. The function

f 1 ((.X-X2).-(1 2 -Xs),(XA-X%)) is then a function of qs alone.

III THE DATA FOR STS AND OTHER STEELS

Elastic Properties

The data on the elastic constants for polycrystalline iron are

summarized in the Metals Handbook" 2 . Average values are reproduced in
fable VI.
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Plastic 2roperties

The Yield Stress

The behavior of armor steel near the yield point is probably
the same as the behavior of the hollow steel cWlinders in the teats made
by Iode 4 , by Taylor and Quinney5 , and by Davis , which were all found to
have a nearly constant octahedral shear stress at the yield point. The
octahedral shear stress for mild steel was found to become a function of
the stress ratios, however, as the strain was increased above the yield
point, with an octahedral shear stress for shear which was less than the
octahedral shear stress for tension. Davis' data for mild steel are not
in disagreement with the sixth power law for f, which has been adopted
for armor in this report.

A more nearly complete investigation has been made cf copper

cylinders by Davis 7 , who compared the test results with Bailey's formulae,
and found good agreement with a fourth power law for f2. Taylor and
Quinney's results for mild steel are similar to the results for copper,
and the same law for f2 holds for both. A fourth power law has therefore
been adopted also for armor steel.

Tension or. Compression

In the case of pure tension or compremsion the principal axes
of stress and strain remain collinear throughout° The stress is uniaxial
and two components of strain are equal. The octahedral shear stress is
given in terms of the single component of stress X, by the expression 1V2 A1
and the hydrostatic tension is equal to -1 X1. The octahedral shear strain
is given in terms of the component d, along the axis of stress and the
component e2 = es perpendicular to the axis of stress by the expression
"•V2 (e 1 -e 2 ). If el and c2 are the permanent strains that remain after
release of stress, then the product (l +e)(l+e2 )2 is equal tp unity and
the octahedral shear strain is given by the expreseion

1
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rhe linear strain [l has the components ir, Ohe matrix

eI 0

00

00 0i -

and the rate of strain • has the matrix

0 0!+eJ

o 0

(.+ el)

Values of the principal strains, the mean strain and the octahedral shear
strain for a few values of the component of strain along the axis of stress
are listed in Table II.

The available data on the stress-strain curves for Class B armor
or STS are summarized in Figure (4). The data at small strains are
summarized by Curve II, which represents the average of tensile tests at
the Armor and Projectile Laboratory on a series of eight plates. The data
for intermediate strains are sýwnarized by Curve III, which represents the
average of tensile tests at the California Institute of Technology "5 on
three SMS plates, and by Curve IV, which vepresents the average of compres-
sion tests at the Naval Gun Factory on four Class B armor plates*. The
tensile teat data for large strains were obtained by Bridgman14 at
Harvard University on these sane four armor plates, while the compression
test data at large strains were obtained on a different STS plate".

The data in Figure (4) have all been corrected to a standard
tensile strength of li5000 (lb)/(in) 2 , and to zero hydrostatic tension.
An asterisk is included in the figure to mark the point of maximum loid
in the tensile test. A single curve is adequate to represent the data
for both tension and compession.

SPlates numbered DD419, 37861, 4A508A,2 and •A.369Ai.

"**Plate No. 87207.
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Torsion

Ini the case of pure torsion the stress is biaxial and the
principal components of stress and strain normal to the ourface of the
specimen are both zero. Let i, J, k be unit vectors with k in the axial
direction parallel to the axis of the specimen and i in the radial direc-
tion perpendicular to the axis. The displacement Ar of a point is given
in terms of' the conventional shear s by the equation

6r = SZj

in which z Is ths axial distance, before strain, of the point from a
reference plane perpendicular to the axis. The conventional shear
strain s at Lhe surface of the specimen is defined in terms of the
radius a of the specimen, the length I of the specimen and the twist
by the equation

a4•
S

The tensors I + VAr and (I + VAr)-1 have the matrices

Ii 0 0 0 00

0 i O and 0 1 0

0 s 1 jO-si

The tensor (I+Vr)-Y "(7 + V"A.')- has the matrix

J~1 0 0

0 1 -S

0 -S 1+ s2

Its principal components are 1 + s ± s V- -s2 and its principal
axes j', k' make &n angle 0 with the axes j,k equal to 'rcot-s). The
reciprocals of the principal components are the squares of the radii lie ,
l+e 8 of the strain ellipsoid29 .

The principal radii, lieP, 1+es are given in temne of s by
the equations

+. t + 1 4 Is-

II e - •s +V/ I7+ ¼k "
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and the principal axes are given in terms of e 2 and es by the equations

= + jcose + kainO = e")j - esk

vn+ e2j + e k

veTTk' = isinO + koosO =- ~

The linear strain tensor [l is equal to e 2 j'j' + e3 k'k' and has all of
the terms in the matrix

0 0 0

0 2 e2S

S0 es V) egg

The components of the matrix are given in terms of s by the equations

= - + V. + 's + ___

Sis+ +

=. 2

' = - i + i+ 1s2  is

44 e/ l+ 44S2

The rate of strain tensor X has the components in the matrix

0 0 0

o o~ •s

A few of the functions for pure torsion are li1ted in Table III
for a few values of s.

Stress-strain curves are reproduced in Figure (5) for annealed
SAN 1021 Steel which were published by Zener and Hollomonf9  Curve I is
the experimental curve for stress against natural strain for the tension

' ~-13-
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test, Curve II is a plot of the octahedral shear sti'ess against the
octahedral shear strain in the tension test, Curve III is the stress
strain curve in torsion to be expected for an isotropic medium with the
same octahedral shear stress in shear as in tension, while Curve IV is
the experimental curve for torsion. The octahedral shear stress for
shear is lower than the octahedral shear stress for tension even at
small strains where other tests indicate no discrepancy. The octahedral
shear stress for torsion was 90% of the octahedral shear stress for

tension at an octahedral shear strain of 0°2.

Similar results have been published by Davies at the
Westinghouae Research Laboratory for 0°35% carbon steel. The octahedral
shear stress for torsion in this case was 92% of the octahedral shear
stress for tension at an octahedral shear strain of 0.2.

Among the tests made by Davis 8 was a combined tension and
torsion test with the ratio of elongation to twist held constant. The

angle between the principal axis of strain and the axis of the specimen
increased during the test from 300 t3 330 at the surface of the specimen,
while the angle between the principal axis of rate of strain and the axis
of the specimen decreased from 290 to 260. Since the ratio of twist to
elongation was nearly constant, the ratio of shear stress to longitudinal

stress should also be constant at the surface of the specimen, and

should vary in direct proportion to the distance from the axis of the
specimen. The ratio between torque and load would then be equal to the
product of ja and the ratio at the surface between shear stress and
longitudinal stress. The principal axes of stress, calculated from the
ratio of torque to load, followed accurately the principal axes of rate
of strain.

BrldgmanLe at Harvard University has investigated the effect
of prestraln in tension on the stress in tension, torsion, and compres-

sion. At an octahedral shear strain of 1.O, the octahedral shear stress

required for tprsion was obb of the octahedral shear stress for sension,
and the octahedral shear stress for compression was only 61jý of the
octahedral shear stress for tension

Radial E.xpansion

In the case of pure radiat expansion the principal axes of

stress &nd strain remain colltnear throughout and one component of

strs" • .•n zero. The octahedral shear strain is given in terms of' the

two o,.her components of strain by the expression 1-vF2 e 4 C

If #I and e2 are permanent strains that remaln after release of stress,

- 14-
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then the product (l+e l )(l+e 2 ) is equal to unity, and the octahedral
shear strain is given by the function tabulated in Table IV. The linear
strain tensor R has the matrix

el 0 0

S1 e 1  0
o -

S0 0 0

and the rate of strain tensor Z has the matrixel 0 0 (
0 0I+ el

0 0 0

Bridgmanls at Harvard University has investigated the collapse
of hollow cylinders under the application of external pressure. He found
that the external pressure is accurately a linear function of the logarithm
of the ratio between the inner radius and the outer radius of the cylinder,
and that the elongation of the cylinder is negligible. Let the radii of
the cylinder before compression be a and b, with a<<O, and let the radii
after compression be a' and b'. A point which was at a radius r before
compression is displaced by the compression to a radius r'. The volume
displaced ie given in terms of the radii by the equations

( a12 _ a2 ) = T(0, , b2 ) = ?t(r' 2  
- r 2 )

The components of strain are given by the equations

a - a

I
l+e.- =V .....

1+e2

e's :- )

The ccmiponents of strain and the octahedral shear strain are therefore
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functions of a parameter m, which is defined by the equation

Since the component of strain es is zero, the components of

stress must vati.sfy the relationships

--XI-X= 2(X 1 -Xs)

"V"X1 -X 2 ) (X2-XS)+ f (X3-1 1) 2  '~(Xi-X8)

The components of stress X,, *'2 are functions of r', and the equation of

equilibrium is

-- ,i.+ - 0
art r?

If the stress difference (X 1 -X 2 ) is expressad in terms of the octahedral
shear stress, and if the octahedral sheer stress is a function of the
strain, then the equation may be solved by quadrature. The values of X,
at the inner and outer walls of the cylinder are equal to the internal
and external pressures on the walls. The internal pressure is zero but
the external pressure p is given by the equation

-2

6•

I a - a

If the external pressure p is dýfferentiatrd with respect to a', an
expression is obtained which involves the octahedral shear stress at
the surfaces of the cylinder only, and is not a function of the stress

in the interior.

Bridgman's data may be summarized by the expressions given in
Table V. The expressions ^or p have teen differentiated with respect to
a' and the results of differentiation have been used in the computation

of the octahedral shear stress at the inner wall. The octahedral shear
stress assumed for the outer wall was corrected for strain hardening.
included in Table V are two steels of nearly 115000 (lb)/(in) 2 and

-16--
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60000 (lb)/(in) 2 tensile ttrengtho A small correction may be applied
to the stress for the difference between the actual and nominal values.
The octahedral shear stress for a hollow cylinder with a tensile etrength
of 111000 (lb)/(in) 2 is compared with the octahedral shear stress for
pure tension or compression in Figure (4), where it is represented by
Curve V. The conventional shear stress in torsion, derived from a hollow
cylinder with a tensile strength of 60000 (lb)/(n.n) 2, is compared with
the conventional shear stress for the torsion test itself in Figure (3)

where it is represented by Curve V.

The Isothermal Stress-Strain Relaticuship for STS

Consideration of all of the available information on the deforma-
tion of armor steel and similar materials leads to the stress-strain func-
tions plotted in Figure (5) and listed in Table VII. The line in Figure (5)
for shear is straight except at the lowest strains but the line for conDres-
sion and tension is slightly curved at the upper end. Values of a, y
have been found from the curves for the case of a static isothermal deforms-
tion and are listed in Table VIjo

Preferred Orientation in Crystalline Grains

A partial explanation for the diffx~rence between the octahedral
shear stresses required for tension and shear may possibly exist in the
crystallograph•c structure of severely deformed steel, The individual
grains in an annealed polycrystalline medium have a random orientation,
but as the plastic deformation progresses, the grains acquire a preferred
orlentationr. In the case of armor steel with less than 5% 31loy content,
the grains have a body-centered cubic lattice" 1 at temperatures less than
5000C. The direction of slip in a body-centered cubic lattice is the ill
axis or body diagonal, &ad the plans of slip may be any one or a combina-
tion of several planes which contain the 111 axis, The principal planes
of slip are the 110 and 112 planes. In the case of pure tension the
grains take up a preferred orientation with a 110 axis or face diagonal in
the direction of stress. In the case of pure compression the predominant
orientation has a Ill axis or body diagonal in the direction of stress,
although a few grain• may also have- a 100 axis or cube edge in the direc-
tion of stress. In the case of pure shear the predominant orientation
has a 100 axis, or cube edge in the direction of compression, with a

.10 axis or face diagonal in the direction of tension

The preferred orientations are suntiarized In. Table Xý Included
in the table ire the principal components of strain along the axes of
stress, produced by uxuit slip in the crystal along the axis of slip, and
the maximum resolved shear stress on any plane of slip in the crystal for
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uniz stress applied to the medium. The octahedral shear stress in the
modium ?or unit resolved shear stress on the axis of slip is equal to 1
in the case of pure tension. 1 or 1 in the case of pure comprension, and

in the case of pure eoear. The octahedral shear stress for shear
in the crystal is therefore less than the octahedr~l shear Ptress for
either tension or ccAnpression.

The medium is of course by no means a perfect crystal after
severe cold work and quantitative agreement between the experimental
results and predictions based on crystal plasticity are not to be expected,
either because of differences in the rate of work hardening in the crystal
or because of constraintz applied tO each crystal grain by adjacent grains.

The Variation of Shear Stress With Normal Pressure

Two shear stresses, which differ only in sign should both cause
shear strain in an isotropic medium at the same magnitude of stress. The
shear stress in the tensile test differs only in sign from the Ehear stress
in the compression test, but the mean hydrostatic tensions also differ in
sign. It is well knowns that metals yield in the compression test at a

greater etress than they yield in the tensile test. The difference in
yield stress is illustrated for armor steel by the tests which were made
in 1941 at the Naval Uun Factory on Class B armor of 115000 (lb)/(in)'
tensile strength. The stress at maximum load in the tensile test was
129000 (lb)/(irn)2, but et the same octahedral shear strain in compression
the stress wa 13.35000 (lb)/(in)2 which represente a 5% increase in shear
stress per 100000 (Ib)/(in) P increase in normal pressure. None of the
difference in stress wee the result of intr-insic anisotropy, since speci*-

sens were cut. from the armor in the three axes normal to the plate,
parallel to the direction of rolling, and transverse tb the direction of
rolling, and the only evidence of anisotropy occurred in the ductil'ty.
Bridgman 1 8, 4, "" has shown directly that the application of hydrostatic
pressure In the tensile test raises the shear stress by a ratio which is
nearly independent of strain. The average Increase In tensile strength
was 12% in a pressure range from 100000 (lb)/(in) 2 to 250000 (lb)/(in) 2 .
The average increase in tensile strngth per 1000X ) (l:,/(in) ' increase
in prestsure is of the order of 6±2%.

The Variation of Stress with Temperature

The effect of temperature upon the physical properties of STS
has been investigated by the group at the Naval Research Laboratory1 8

where the Brinell hardness was measured for temperaturem in the range
from -1830C to .1650C. The values for Brinell hardnees have been con-
verted" Into values for tensile strength, have bien •ivided throughout



by the tensile strength for 15 0 C, and the ratios have been plotted in
Figure (7). Thi data indicate that the tensile strength decreases 17.5%
per 1000C rise in temperature at 15*C.

The effects of temperature and rate of strain on the tensile
strength of copper, aluminum, iron and mild steel have been investigated
by Manjoine and Nadai2 * at the Westinghouse Research Laboratory for
temperatures in the range from 20 0 C to 1200°C and for rates of strain in
the range from l0-6 (ser-)-l to 1000 (eac) 1 . Curves are included in
Figure (7) to illustrate approximately the variation with temperature
for mild steel.

The effect of temperature upon. the tensile strength for
temperatures in the range from -190 0 C to +200C and for strain rates in
the range from 10- 4 (sec)-Y to 0.0l(sec)- 1 has been found by the group
at Watertown Arsenal•° to be accurately representable by an equation of
the, form

logX* = A + n(loge + -)

in which X* is the tensile strength, 9 the strain rate, T the absolute
temperature, R the gas constant, and A, n and Q are constants. The
corresponding functions qp(1) and q9(i) have the form

q2(T) = A'e q3 (i) =A"

in which A' ar•6 A" are constants. The Watertown Arsenal data correspond
to a decrease in tensile strength of ?% per IO00% rise in temperature at
150C in the case of forged steel or tempered martensite, and a decrease
of 6% per 1000C rise in temperature in the case of pearlite. The results
for forged steel or tempered marte,,site are illustrated in Figure (7) by
the line labelled Z.

The function q 2 (T) which has been chosen t- represent the ratio
between the tensile strength at temperature T and the tensile strength

at 15%C is plotted in Figure (7) and tabulated in Table VIII.

The Variation of Stress with Rate of Strain

The variation of stress with rate of strain has not been
systematically Investigated over a wide range of strain rate on Class B
armor or STS. Measurements have been reported by Seitz 2 1 at the
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University of Pennsylvania and at the Carnegie Institute of' T,chnology,
in which the stress was found to be increased with increase in strain
rate, by a ratio independent of strain The stress was increased by
21% to 24% for an increase in strain rate from i (sec) - to 1500 (seo)-
The specimens were amall cylinders .171" diam X .375" length, and were
tested in compression to 25% reduction in length. Pcinvs are plotted in
Figure (8) to represent these dstao

Measurements on STS have been made by the group at the
California Institute of Technology~s, in which the tensile strength in
an impact tensile test was compared with the conventionsl static tensile
strength. The specimens were .3" diam X 8" gage ]aigth, and the impact
velocity was in thm range from 25 (ft)/(sec) to 200 (ft)Z(Oec)° The
ratio between dynamic tensile strength and atatic tensile strength has

been calculated from the data, and the averages for three CTS plates
have been plotted against the average rate of strain in Figure (8).
Included among the data from the California Institute of Technology
were some results on two Class B armor plates which are consistent with
the results on S3S but more widely scattered. The von Karman' 8 critical
impact velocity for olass B armor or STS was found to be 200 (ft)/(sec),
and the data are all below the critical velocity. Included in th3
diagram are the average results for three mild steel plates investigated
at the California Institute of Technology". The von Karman24 critical
impact velo.-ity for mild steel was found to be between 125 (ft)/(sec) and
150 (ft)/(sec), and the California Institute of Technology data on mild
steel therefore straddle the critical velocity.

The only systematic investigation over the whole range of strain
rate has been made by manjolne and Nadai" 3 at the Westinghouse Research
Laboratory on copper, aluminum, iron and mild steel. The specimens were
.21' diem x ill gage length. A curve is plotted in Figure (8) to illustrate

the Westinghouse Research Laboratory data on mild steel at 200C, together
with two of their data for pure iron. The curve has a characteristic
minimum in approximately the range of strain rate which occurs in the
conventional static tenaile test, and the curve is not linear. Thi

Westinghouse Research Laboratory data on mild steel were below the

von Karman critical velocity,

4ea&surements have also been made on mild steel by the

Massachusetts Institute of TeChnologyV' but the impact velocity wa-s above
the von Karman critical velocity and the data are all low. The data
from the Massachusetts Institute of Technology are also included in
Figure (8) for comrarlson.
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Measurements by the group at WAtertown Arsenal at strain rates
leass than 0.01 (ee) correspond to an increase in tensile strength
of 0.90A per unit increase in logi ir ths case of forged steel, and an
increase of O.8ý in the case of pearlite, Their results for forged steel
are illustrated 'An Figure (8) by the line labelled Z. A variation of
stress with strain raete of th#e- same magnitude has also been observed byBridgman• with torslon -tests on 1020 Plain carbon steel at strain rates

less than 1.0 (t ec)-1.

SThe group at the California institute of Technology have found
that th-i ratio between dynamic and static tensile strength to greatest
for pure Iron and decreases with increase in the hardness of the ferrous
alloya. Their average results for iron, MS, HTS, Class B Armor and STS
are compared with their results for a few SAE and NE steels in Figure (9).

The data raported by Seitz, by the California Institute of
Technology, and by the Westinghouse Research Laboratory were al. obtained
with high speed impact machines, in which the energy of a spinning wheel
is transferred through d tup to the specimen by a trigger device. The
data from the Massachusetts Institute of Technology were obtained with a
device in which the source of energy was an exploding powder charge.
In all cases the oscillograms were obscured somewhat by vibrations in the
specimen and stress gauge. The vibrations were damped, however, and the
averrge stress at maximum load should be a fairly accurate representation
of the dynamic tensile strength, even though the yield point was obscured
by vibration. Similarly, the rate of strain in each tensile specimen
was not constant, but the multiple reflection of plastic waves from both
ends of the specimen together with damping effects probably reduced the
fluctuations tn rate of strain to such an extend that the instantaneous
rate of strain at maximum load was not far different from the average
rate of strain, as long as the impact velocity was less than the
von Karman critical velocity.

Measurements hate been made by the group at the California
institute of Technology 2 e, in which hollow tubes were loaded, at various
rates, with internal fluid pressure, and the fluctuations in strain rate,
which are associated with plastic waves, were thus eliminated. The
apparatus was so designed that the axial component of stress was
essentially zero. The stress system was therefore a uniaxial tension,
with the principal axis of stress in the circumferential direction.
The ratio between the dynamic tensile strength and the static tensile
strength has 'ieen calculated from the data and the values for each of
three b'TS pl.tes have been plotted in Figure (8). The values of the
ratio are scattered over a wide range, which extends from unity to the
values for .enslile tests. The specimens were cut from the plates with
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the axes of the specimens parallel to the direction of rolling in the
plates. The circumferential direction in the specimen was therefore a
direction of little ductility, and the specimens usually ruptured at a
circumferential strain much less than the strain for maximum load. Some
specimens developed cracks and leaked after very little strain, and were
probably not homogeneous in structure.

The function qs(g), which has been chosen to represent the
ratio between dynamic and static tensile strength for Class B armor
and STS, is given as a function of i in Figure (8) by the curve labelled
STS.

At the strain rates of importance in ballistic applications,

the function may be represented analytically by the limiting equation

logqB(i) = (.01 ± .02) + (.04 ± .O1)logi (26)

which is satisfied by qs at high rates of strain.

The function q8 (i) has for its inverse, the function f 1 (qs)
which is tabulal;ed for a few values of q. in Table IX. In the special
case of a tensile test, the equations of flow reduce to the equation

IV APPI1CATIONS

The Adiabatic Stress-Strain Relationship for STS

Work is done on each element of volume in a med um during a
plastic deformation. The rate of doing work is equal to the trace or
spur of the tensor 4'-. In the special case of a deformation with
stationary axes of stress the work w on unit volume is given in terms
of the components of strain e1 , e 2 , es by the equation

)Xjidel + !de2 + X'qd e.,
so = !'(l+e 1 )(l+e)(l+e's + --- + (27)

l+e 1  l+e 2  1+es

Approximately 1% of this energy in steel is stored In the form of
internal potential energy' , and the remainder is released in the form
of heat. In an adiabatic deformation the temperature rises and the
stress is less than the stress in an isothermal deformation.

U,
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The temperature rise in an adiabatic deformation is governed
by the differential equation

pc 0dT = gq 2 (T)dwo

in which p is the density of the medium, c 0 is the specific heat, T is
the temperature, dwo is the work done on unit volume in an isothermal
deformation, and g is the fraction of energy ccnverted into heat. The
integral of the differential equation is

I T pIP

T0 q* To ) dT (28)

in which To is the initial temperature.

The results of integration are tabulated in Table VIII, as a
function of temperature, for Class B armor or STS. Specific heats for
the integration were taken from the Metals Tiandbook 1 -. A curve to
represent the relationship between octahedral shear stress and octahedral
shear strain in an adiabatic deformation with pure shear is plotted in
Figure (6) together with the temperature. The stress in the adiabatic
deformation is a maximum at an octahedral shear strain of 0.5.

The deformation in any object is isothermal if the deformation
occurs so slowly that thermal equilibriLun is maintained, and is adiabatic
if the heat of deformation is liberated before it can be conducted away.

If the rate of strain were so adjusted that the rate of
liberation of heat were constant, the temperature would rise adiabatically
at the beginning of deformation, but would approach a steady state tempera-
ture as the deformation progressed. The transition from adiabatic deforma-
tion to isothermal deformation depends upon the dimensions of the object.

As an example, the temperature at the center of a standard
.505" diarn x I" gage length tensile test bar would lag to one half of the
adiabatic temperature rise in a time interval of the order of 10 sec.
If the duration of the tensile test is much greater that 10 sec the
deformation is nearly isothermal and if it is much less than 10 sec it
is nearly adiabatic. The elongation at maximum load in the case of
Class B armor or STS is IL% and the transition rate of strain is there-
fore of tha order of .01 (sec)-' in a tensile test on armor. Tice stress
at 12% elongation in an adiabatic defoimation is, however, only L less
than the stress in an isothermal deformation at the same rate of strain.
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The Propagat~on of Elastic Waves

The equation of motion' in an elastic medium is

Sp•" = (X-+t-f)VVoAr + ILVoVAr ('29)

in which p is the density of the medium, Ar is the displacement of an
element of the medium and Sji is the acceleration of the element.

The displacement Ar may be expressed as the sum of two vectors,
the gradient of a scalar function whose curl is identically zero, and the
curl of a vector function whose divergence is identically zero. The equa-
tion of motion splits into two separate wave equations which govern the
two comporent vector functions. The irrotational displacement satisfies
the equation*

p& = (X+2•)V'VAr (VXAr = 0)

and the rotational displacement satisfies the equation

-= VVAr (VoAr = 0)

The component deformations ara propagated with different velocities.

In a plane longitudinal or irrotational wave there is a compo-
nent of strain e, in the direction of propagation but the components e 2 ,
e3 parallel to the wqave front are zero. The dilatation is therefore equal
to el. The components of stress are given by the equations

1 -CT e X 2 =X 3  07XI
X•=(I+o-)(1- Z) X s=(X

and the velocity of propagation c1 by the equation

C1 z - - PE (30)

* A vector whose curl is zero eLtisfieS the equation

VXVXAr = VV Ar - VVAr =0
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In a plane traieverse or rotational wave there is a simple
shear s in the plane of the mave front but the displacement in the
direction of propagation is zero. The principal axes of strain are at
45 to the direction of propagation and the principal components of
strain are given by the equations

eI = + *$ -- e . -- 0

The principal components of stress are given by the equations

AX = + P.s = -= 0

and the velocity of propagation cp by the equation

V [ -XI (31)
P P

A plane longitudiral wave is transformed by reflection at a
free boundary into a pair of waves. Let I, J, k be unit vectors with k
normal to the free boundary, and let n' be the normal to the incident
longitudinal wave, ny be the normal to the reflected longitudinal wave
and ny be the normal to the reflected transverse wave. The incident
normal ni makes an angle of incidence 01 with the boundary normal k.
The reflected normal ni makes an angle of reflection eoual to thet angle
of incidence, but the reflected normal n'3 makes a different angle of
reflection 02 with the boundary normal. The normals and angles are
illustrated in Figure (i0). Since the waves must remain in phase at the
boundarj, the angles 01 and 02 are related to the velocities cl and c2
by the law

sin'i1  c2
•inO•, c2

Tne normal" are expressed in terms of the unit vectors by the

equations

nj = i3inO1 - kcoe0 1

n" = ieinO, + kcosOl

n' = isinO2 + kcosO(

Displacement in the transverse wave occurs in the direction of the unit
vector ico n O, -kslnO2 . A strain e' in the incident longitudinal wave,
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a strain e" in the reflected longitudinal wavy, and a shear s" in tho
reflected transve,-se wave combine to give a displacement Ar whose
gradient has the compona.ts in the matrix

( + e "1)sin261 + S "S"6e2 0802  0 - (e- e ".)sin61cos~i - s fain 2 62

0 0 0

S- (e -•")sinejcosO + 5Ncos 2 6 2 0 + (e'+e")cos 2 61 - s ein02cos%,

The principal component of strain normal to the plane of incidence is
Zero.

Since the force on the free boundary is zero, the priacipal
axes of stress at the boundary are parallel to the surface, and the
principal. component of stress normal to the Purface is zero. The
principal axes ot strain are therefore also normal to the surface, and
the vecto-a i, k which were orthogonal before deformation are still
orthogonal after deformation. The condition of orthogoný.lity is given
to the firet order in t."e strains, by the equation

2(e' - e")"inelcosO1 = s"(cos08 2 - sin"Q,) (32)

and the principal components of strain are given by the equations

el = (e' +e")sin 26, + s"'sin62 cosG2

e2 = 0

es = (e'+e")cos'O1 - s' sina 2coSO2

Solution of the equations of Hooke's law with e2 and X3 equal to zero
leads to the relationship

el +es C2 sin2O2

el- ev C sin2 G1 - sin•O2

which may be reduced to the equation

(e' e")sin 2 (1 = - (33)
Coe2O2 - sin 2 02

The equations (32) and (33) may be solved simultaneously to finc el" ands" in terms of e' for any 0.,.
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The two velocities cl and c. for longitudinal and transverse
waves in steel are 19400 (ft)/(sec) and 10400 (ft)/(sec). The components
of strain in the waves reflected from a free surface have been computed
for steel. They are listed in Table XI and plotted in Figure (ii).

The Propagation of Plastic Waves

Plastic deformations are propagated by waves if variable
velocity, In a plane longitudinal or irrotational wave there is a compo-
nent of strain el in the direction of propagation, but the components e2,
es parallel to the wave front are zero. The dilatation is therefore
equal to e1 ,, and the octahedral shear strain is equal to ! el. In
addition to the component of stress X, in the direction of propagation,
there are two equal components of stress X2, Xe parallel to the wave front.
The octahedral shear stress is therefore equal to I-!/'2 (XI-X 2 ), or to
1/2- (X,-Xs). Since the mean hydrostatic tension is a function of the
dilatation, and the octahedral shear stress is a function of the octahedral
shear strain, both may be expressed as functions of e,, and may be solved
simultaneously for the component X, of stress in terms of the component ei
of strain. The equation of motion" is

ax= dX 1j 
2AX

('9x del aX2

in which x is the initial position along tha direction of propagation of
a point whose displacement is Ax and p is the initial density. A partic-
ular solution of the equation of motion may be found by the method of
von Karman24. The strain e3 is set equal to a function i(x/t), and the
displacement Ax is then given by the equation

CO x
Axz ~ q()dx

x t

The particle velocity Ax is given by the equation

X0' x
Ax f ~(- dx I'(-)del (34)

Substitution of the function for Ax into the equation of motion le.ade to
the relationship

x 1
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The plastic wave velocity decreases with increase in strain, but is not
loes than eight tenths of the elastic wave velocity.

The phase velocity x/t for STS is represented by Curve I in
Figure (12) and the particle velocity Sx is represented by Curve II.

In a plane transverse or rotational wave, the medium is subject
to a simple shepr of amount s. The octahedral shear strain is almost,
but not quite equal to (i/11-6)s. The correct relationship is given in
Table III. Displacement in the medium is ropagated by a shear stress X,2 .

The octahedral shear stress is equal to / X 1 2,, The shear stress X1 2 can
be expressed as a function of s and the equation of motion is

aX12 dX1 2~ U2AY

3 ax ds axs?

in which Ay is the displacement, parallel to the wave front. The equa-
tion is similar in form to the equation of motion for a longitudinal wave.
The phase velocity is given therefore by the equation

X -W --
- = . -(36)t P ds

The phase velocity decreases with increase in strain and becomes zero at
that strsin for which the adiabatic stress strain curve has zero slope.

The phase velocity x/t for SITS is rep-esented by Curve I in
Figure (13), and the particle velocity Yy is represented by Curve II.

Von Karman's analysis gives the motion in a plastic wave which
starts from the origin at zero time. The wave is maintained by a constant
stress at the origin, and the particle velocity il constant at the origin.
If the stress is suddenly withdrawn, an elastic unloading wave is trans-
mitted which moves faster than any part of the plastic wave and overtakes
the plastic wave. Interaction between the unloading wave and the plastic
wave sets up secondary waves which gradually transform the kinetic energy
in the medium into plastic energy The propagation of the plastic deforma-
tion continues long enough to convert all of the :inetic energy into
plastic energy. Details of the motion in the general case of a variable
stress at the origin must be found by a more complicated analysis than
von Karman's. if the velocity and displacement are both specified at
every point in the medium at zero time, then the velocity and displacement
are determined for all subsequent time by the equation of motion. The
velocity and 0iisplacernent may be found by numerical integration of the
equation of motion.
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The Flexure of a Plate

In the case of pure flexure, the central plane of a plate is
bent into a curved surface. On the concave side of the middle surface
the material of the plate is compressed, while on the convex side it is
stretched. The midale surface remains nearly free of strain. Forces
are applied to the edges of the plate, but not to the free surfaces,
hence two of the principal axes of stress at a free surface lie in the
surface, while the principal component X8 of' stress normal to the plate
is zero. Two of the principal axes of strain at the surface therefore
also lie in the surface. A line segment which was normal to the free
surface before flexure, is still normal after flexure, and is also nearly
normal to the middle surface0

The principal components of strain e, and e 2 are given by the

equations

el = x1z e. = X2 (37)

in which x, and x2 are the principal curvatures of the plate.

The flexure of the plate is maintained by two stress moments
M, and N2 which are defined by the equations

+jh +jh

=1 - f Xlzdz M2 r-f X2ada-j -jh

in which z is the distance measured from the middle surface and h is the
thickness of the plate. The stress moments M, and M2 are expressed in
terms of x, and x by the equiations

X"-X~~e 1 N -Jx X2 _PKjh 2 e

Each of the components of stress X, and X2 are functions of
both of the components of strain el and e2 . Each of thu stress moments
N3 and N2 are therefore also functions of both components of curvature x1

and X2 . The relationship between the moments and the curvatures is best
represented by a di rLm, in which contours of equal (1ih2),N or (i/h 2 )N2
are plotted against h•x and ýhx. The contour plot for (i/'h 2 )N2 may be
obtained from the contour plot for (1/h 2 )Nj by an interchange of x, and X2 .
A few contours for Sf3 of 1ThO)O0 (lb.)/(in) tensile strength are plotted
in Figure (14), end the data for the contours are given in Table XII.



PIt U
0e1D.

44
Im ae

hfi
*Pc01

@4)

*m 11

40

-- 4) 0)I

43 Cl 1)

-3c C



Table Ii

The Components of Strein in Tension or Compreesicn

1  dog (i + f
e21og (1 + e 2 )

-. 9 +2.16 +1.140 -1o442 -2.30

-. 8 +1.236 + .557 - .960 -1.609
-. 7 + .825 + .317 - .719 -1.204
-. 5 + .414 + .109 - .431 - .693
-. 3 + .195 + .030 - .233 - .357
-. 2 + .118 + .012 - .150 - .223
-. I + .054 + .003 1072 - .105

0 .000 .000 o000 .000
1 - .046 + .003 + o069 + .095

+.2 - .087 + o009 + .13b + .182
+-5 - .184 + .044 + 322 + .406

+i.0 - .293 + .138 + 809 + .693
+1.5 - .367 1 .255 + 1880 + .916
+2.0 - .4,23 + - 365 +L 142 fI. 099
+3 - .500 + .667 +1.650 +1.386
+ -- •592 +1-272 4-2.636 +1.79

+10 J 9- .69 +2. 868 +5.04- +2.40
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Table IV

The Components of Strain in Radial Expansion

m+log(l +e2 )
, -log(I + C2)

0 0 0 0 o000
11 -. 091 .003 .078 .095
.2 -. 167 .0)1 .150 .182
.3 -. 231 .023 .217 .262,
.5 -. 333 .056 .342 .406

1.0 -. 500 .167 .624 .693
1.5 -. 600 .30 .883 .916
2.0 -. 667 .444 1.133 1.099
3 -. 750 .750 1.620 1.386

.-. 383 89 2.575 1.79
10 -. 909 .030 4.94 2.40

Table V

The Collapse of Hollow Cylinders

Ten ile
Steel Strength External Pressure

A5 104000 + 92000 + 1,65000 log(a/a')
A6 114000 +110000 + 191000 log(a/a')
A7 170000 +255000 + 245000 log(/a/')
AB -- +135000 + 219000 log(a/a')

S 57000 + bOO0 + 112000 log(a/a')
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Table VIII

Ratio between the Stress in an Adiabatic Deformation
and the Stress in an Isothermal Deformation

r q2(T) (10-1)V--0dT
qs(,T)

c ( ft) (lb)/(ft)3

-200 1.57 -10.8
-150 1.25 - 9.5

-100 1.125 - 7.3
- 80 1.094 - 6.2

- 60 1.068 - 5.0
- 40 1.046 - 3.8

- 20 1.026 - 2.5
0 1.009 - 1.1

+ 15 1.000 0.00
+ 20 .995 + .37

+ 40 .980 + 1.9
+ 60 .967 + 3.4

+ 80 .955 + 5.0
+00 .942 + 6.7

+150 .91 +11.0
+200 .88 +15.8
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Table IX

Strain Rate Function for Class B Armor or STS

11.5000 (lb)/(in)2 = tensile strength
15C = temperature

(see)-`

i.0 .000

1.2 8.0
1.3 60

1.4 300
1.5 •1200

-37-
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Table X

Properties of a Body-centered Cubic Crystal

Stress Tension Compression Shear

(1) (2)

Preferred orientation

Axis of Tension 110 110

Axis of Compression ill 100 100

Component of Strain, per Unit
Slip on 111 Axis

In Axis of Tension

In Axis of Compression -2

Maximum Resolved Shear Stress
on ii Axis per Unit Appiedd Stress -2 ý/ "

Octahedral Shear Stress
for Unit Applied Stress j V2  , -

-36-



Table XI

Reflection of Elastic Waves at a Free Boundary in STS

I1 sinO0 sin 62  e•ti pe

0C, .000 .000 -1.000 .000 .000 .000 .000
5" .087 .047 - .991 .347 .016 -. 007 .010

J0o .174 .093 - .963 .683 .064 -. 02? .0-38
15* .259 .139 - .918 .997 .143 -. 060 .0B0

OG .342 .).83 - .858 1.280 .247 -. 105 .148
25 * .42Z .•27 - .785 1.524 .375 -. 159 .224
30v .500 .268 - .702 1.721 .519 -. 221 .310
A50 574 .307 - .613 1.869 .674 -. P7 •4028

400 .643 .345 - .521 1.965 .833 -. 354 .498
45 0 .707 .379 - •452 2.009 .989 -. 421 .591

500 .768 .411 - • 349 1.005 1.132 -. 482 .677
550 .819 .439 - .279 1.955 1.255 -. 53.4 .750
600 .866 .464 - .226 1.865 1.348 -. 573 .805
650 .906 .486 - .197 1.737 1.397 -. 594 .835

700 .940 .504 - .203 1.570 1.387 -. 590 .829
759 .966 .518 - .257 1.355 1.293 -. 550 .773
800 .985 .528 .;380 1.066 1.080 -. 459 • 64,5
850 .996 .534 - .606 .650 .682 -. 290 .408
90A 1.000 .536 -1.000 .000 .000 .000 .000

-.39 -. ,
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VI I DI SYBOLS

a, b radii of cylindrical specimen before deformation.

a',bI radii of cylindrical specimen after deformation.

A, A'. A" empirical constants

O9,,y parameters in tile stress-strain-rate of strain relationship.

C IL phase velocity for elastic longitudinal wave.

Sphase velocity for elastic transverse vave.

cP specific heat.

ej,,e 2 a•,6s,eI 9 ,e 2 s,euI components of linear strain.

el, d2, eS principal components of strain.

1 +et, I +e2, 1+eS principal radii of a unit sphere after
deformation into an ellipsoid

log(l+e,), log(l +e2 ), log(l+es) components of natural strain.

el, ei, is time rates of change of e1 . e2 , eg.

dilatation.

TIý(eatn-) octahedral shear strain.

e' strain in incident 'Longitudinal wave.

ex strain in reflected longitudinal wave.

E strain rate (tension).

components of strain rate.

it, i,, is principal components of strain rate.

(i• i), (i2 - is), (is - i 1 ) principal components of rate of
shear.

6 young's modulus.

_ • ., . ... .. • -- _ _ I . . . . . "-4 - . . .m .. .I I I I I II l II
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f vector force.

() -XI)) function in the flow equations whichdetermines the magnitude of rate of
strain.

f2(X1-X 2 ),f 2 (X 2 -X 3 ),f 2 (Zs-X1 ) functions in the flow equations which
determine the distribution of rate of
shear.

g fraction of plastic work converted into heat.

h plate thickness.

i,j,k orthogonal unitary vectors,

i axis of specimen (tension or compression).

i radial direction (torsion or radial expansion).

k axis of specimen (torsion or radial expansion).

k normal to free boundary (wave reflection and
bent plate)

i,j,k principal axes of stress (general analysis).

Si',J',kI principal axes of strain (general analysis).

I unitary tensor.

bulk modulus.

KI'X2 components of curvature, or reciprocals of the radii of
curvature (bent plate).

X elastic modulus.

I shear modulus.

m.n indices.

MtM 2  stress moments (bent plate).

n unit vector normal to a surface element.
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nomal to incident longitudinal wave.

normal to reflected longitudinal wave.

nV nornal to reflected transverse wave.

rate of rotation tensor.

P pressure.

angle of twist.

strain tensor (elastic deformation).

El strain tensor (plastic deformation).

stress tensor (general analysis).

q ratio between the stress in an actual deformation, and
the stress in a static deformation at zero hydrostatic
tension and at 150C.

q1(p) ratio between shear stress at normal pressure 0 and
shear stress at zero pressure.

q2 () ratio between shear stress at actual temperature T and
shear stress at 150C.

q3 (•) ratio between shear stress at strain rate 9 and shear
stress in a static deformation.

Q heat of activation per molo

r position vector of a point in the medium.

Ar vector displacement of a point in the mediLu,.

A'r vector velocity of a point in the medium.

vector acceleration of a point in the medium.

V Ar tensor gradient of the vector Ar.

V*6r conjugate of VAr.

lin,
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V.Ar divergence of Ar.

r radial coordinate before deformation.

r' radial coordinate after deformation.

R gas constant per mol.

p density.

Svector surface (general analytsis).

s shear strain.

S" shear strain in reflected transverse wave.

s rate of shear.

Poisson's ratio.

rate of strain tensor.

t time (sec).

T absolute temperature (OK).

initial temperature (1500).

¶ volume.

64 angle between principal axik of strain and axis of
specimen (torsion)

01 angle of incidence and angle of reflection for longi-
tudinal wave.

02 angle of reflection for transverse wave.

u variable of integration.

v vector velocity of a point in the medium.

Vv tenaor gradient of the vector v.

V*v conjugate of Vv.
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'V- divergence of v.

toplastic energy per unit volume.

•o plastic energy in an isothermal deformation.

x.Oyz cartesian coordinates.

I, X2, e sXI 2AX2,l zI components of sl.ress,

XIXQxs principal components of stress.

It mean hydrostatic tension.

S) octahedral shear stress.

X' yield stress.

X* tensile strength.
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